
II.6 INTERPOLATION AND INTEGRATION IN RECIPROCAL SPACE 

II.6a. Theory 

This section presents a technique for approximating integrals of 
k-dependent quanti ties over the BZ. as needed for determining the 
Fermi energy of conductors. for reconstructing the P matrix in 
direct space during the self-consistent procedure. for calculating 
total and projected densities of states (DOS) (see section I. 3e and 
appendix B). It is based on two simple concepts: the expansion of It 
dependent functions (eigenvalues. eigenvectors) in a Fourier series. 
and the expansion of energy dependent quantities (DOSs) into Legendre 
polynomials. In this section each band is identified by superscript 
(j). so is the j-th eigenvalue at point It. 

The general DOS is a function of energy which can be expressed as 
follows for a periodic system: 

= I j : 1 

=! f R(j)(k) dk 
VB BZ 

II. 6.1 

II .6.2 

The overall DOS is the sum of contributions p(j) from individual 
energy bands. In the present scheme the number of bands. P. equals the 
number of AOs associated with each crystal cell and is therefore 
finite; each band spans a limited energy interval 
The weighting function R (j) (k) characterizes the specific DOS. Three 
types of R(j)(lt) functions are here considered: 

R(j)(k) 
o 

R (j) (k) 
J,/vg 

2 II.6.3a 

II.6.3b 

II.6.3c 

The density associated with the trivial weighting function 
Ro(j) is obviously the total DOS for the j-th band. It can be used to 
determine the Fermi energy of the system. through the condition: 

II. 6.4 

where q is the number of electrons per unit cell. The weighting 
function RJ,/vg(j)(k) of equation II.6.3b defines the projected DOS 
associated the AOs [J,/O] and [vg]. and gives pgJ,/v after summation 
over the band index j and integration up to Finally. equation 
II.6.3c defines the total DOS projected onto a given set of AOs (a 
shell or an atom) according to a Mulliken population analysis. Due to 
the trace operation LV)' RA(j)(k) is a totally symmetric 
function of k. This is generally not true for the expression II.6.3b; 
however. symmetric functions RJ,/vgS(j) (k) can be obtained from 
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Rpvg (j) (k) by averaging over all the points kV of the "star of kIf 
generated from k by application of the h operators V of the pOint 
group (see section II.7): 

R (j) (k) = [r:h R (j) (k v) ] Ih 
pvgS V=l pvg II.S.5 

Obviously, RpvgS(j)(k) gives the same result as RpVg(j)(k) when the 
integral II. S. 2 is performed, since E (k) and the integration region 
are also totally symmetric with respect to point group operators. 

In the following, we shall first consider the contribution from an 
individual band, and drop accordingly the band index j; the general 
multiband case will finally be discussed. Only the 3-dimensional case 
is treated since nothing is changed when passing to systems of lower 
dimensionality. 

The integrals II.S.2 must be evaluated starting from the knowledge of 
R(k) and E(k) at a certain number of sampling points where the 
one-electron equations have been solved. The set K of sampling points 
comprises here S=Sl -S2 -sa points ki belonging to a regular net (see 
equation I.3.15): 

II.6.S 

The shrinking factors Sl' s2' sa are in such a way so that all 
high multiplicity (special) pOints 1n the BZ belong to K; band 
extremes are then likely to occur at one of the sampling points. If 
symmetrical functions RS(k) are considered, one can restrict oneself 
to the subset K' comprising S' sampling points that belong to the 
irreducible part of the BZ (IBZ). Each kiEK' pOint has a geometrical 
weight Wi attached, which is proportional to the number of non 
equivalent k vectors in its star, and satisfies r:i Wi = 1. 

An interpolation scheme of the kind discussed in section I.3e is now 
used for obtaining the approximate analytic expression R(k) and E(k) 
of R(k) and E(k) in the form of a truncated Fourier expansion 1see 
equation I. 3.13). Here we choose as follows the expansion set G of 
lattice vectors. Consider a superlattice characterized by 
"supertranslation vectors" = Slal' = S2a 2' = saaa' and take 
the corresponding "super-Wigner-Sei tz cell". The set G now comprises 
all lattice vectors 9 which are inside or at the surface of this 
supercell. Each vector gEG is assigned a weight Wg=l/Pg; for vectors 
inside the supercell, Pg=l; for those at its surface Pg is the number 
of vectors of the star of g, which are equivalent to each other 
through a superlattice vector !!. The following orthonormality 
conditions are easily seen to hold for all g,g'EG , k,k'EK (note that 
the ki's are reciprocal lattice vectors of the superlattice): 

II.S.7 

II. S. 8 

We can now define an approximate analytic expression f(k) which 
coincides with the original one f (k) at all sampling points, and 
satisfies the periodicity condition !(k) !(k+K) 
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II. 6. 9 

II.6.10 

If totally symmetric functions are considered, all Fourier 
coefficients are equal when referring to geG vectors that belong to 
the same "star" Sm of symmetry related lattice vectors. Following 
Monkhorst and Pack (1976) we can then use real symmetrized plane waves 
(SPW) Am(k) as an expansion set: 

-H 
Nm Egesm exp(i k·g) II.6.l! 

IBZ dk Am(k) An(k) = $mn II.6.12 

Here Nm is the number of vectors of the m-th star, and m is comprised 
between 0 and M, corresponding to the star of the largest geG vectors. 
When using SPWs as an expansion set, we must associate to each of them 
a weight Wm = l/Pm, where Pm is the number of partners (in the sense 
specified above) of the vectors of that star: so, Wm = 1 for internal 
stars, and Wm " 1 for stars at the surface of the super-Wigner-Sei tz 
cell. We can thus write, for instance: 

e -m 

II.6.13 

II. 6 .14 

For expanding the Rt/vg(k) function defined by equation II.6.3b we 
could directly use equation II.6.9 and 10 (Angonoa et al 1984b) with 
the substitution f"'Rt/vg' However, it is convenient first to obtain 
approximate * expressions for the eigenvector coefficient products 
apv(k) = 2at/(k)av(k) of the chosen band according to those equations, 
and then use them for expressing : 

With this procedure, one takes into 
oscillating exp( ik·g) factor from the 
express ion becomes exact in the I imi t 
or more generally, when apv(k) is 
eigenvector product. The corresponding 
is: 

II.6.15 

II.6.16 

account the presence of the 
start, so that the approximate 
when a(j)(k) is k-independent, 
a good approximation of the 
symmetrized expression of 

E N-H [ W ] A (k) 
= m m '"'heG h m II.6.17 

where the sum E(m,h,g) is extended to those beG vectors such that g+h 
belongs to the m-th star. When evaluating this expression, use can be 
made of the symmetry properties of the c;t/vh coefficients (equation 
II.7.26). 
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We can now use the approximate expressions E:(k) and R(k) (equations 
II.6.13 and 15) instead of the exact ones Nin equati"'on II.6.2. For 
evaluating the integral over the BZ, we consider a technique (Pisani 
1982; Angonoa et al 1984b) based on the formal expansion of the DOS in 
a truncated series of Legendre polynomials 

-1 " x " 1 ] II.6.18 

for which the well-known properties hold true (Abramowitz and Stegun 
1965): 

(_1)(R-i)/2 (R+i)! c (R) = _-:--__________ _ 

i 2R [( R-i) 12]! [( Hi) 12]! i! 

o 

1 J dX4l R(x)41 R,(x) 
-1 

even R-i 

1 
II.6.19 

odd R-i ] 

2/(2Hl) II.6.20 

II.6.21 

It is expedient to introduce, for each band, a new variable x, 
linearly related to E: as follows (A and B are the lower and upper 
extreme of the band considered ): 

x(E:) = q E: - r q = 2/(B-A) r = (B+A)/(B-A) II.6.22 

We will also define: 

X(k). x[:(k)] II.6.23 

Since by definition: , we have With respect to the 
new variable, the assoc1ated DOS p'(x) can then differ from zero only 
in the interval and the expansion can be considered: 

p' (x) = JBZ dk 'b[x-X(k)] = tR !R 41 R(X) II.6.24 

Multiplying this equation by 41R(x) and integrating over x yields: 

II.6.25 

On the other hand, from equations II.6.13, II.6.22 and II.6.23: 

X(k) , with II.6.26 

= q - r = q , whence II.6.21 

II.6.28 
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because products of SPWs are a linear combination of such functions: 

II.6.29 

The FnJl "Fourier-Legendre" coefficients playa key role in the theory. 
They-are obtained starting from 

F .. S -no no F = x -nl -n II .6. 30 

and using the recursion relation 

!:nJl+l II.6.31 

By substituting II.6.17 and II.6.28 into II.6.25 and using the 
orthonormality of SPWs (II.6.12), we obtain the important result: 

II.6.32 

which permits the reconstruction of the projected DOS p'(x) according 
to equation II.6.24. In the case of total DOSs, because of equation 
II.6.3a, we simply have: 

II.6.33 

The results II.6.32, 33 are exact if the Fourier expansion of p'(x) as 
defined in equation II. 6.24 is convergent. This is obviously not 
always the case. Critical situations, such as occur for instance in 
model cubic metallic systems, have been discussed by Pisani (1982). In 
practice, the expansion is truncated to some maximum Jl max value, and 
the approximate expression is a good approximation of the real DOS 
except near critical energy points. If an accurate description of the 
DOS in these critical regions is required, use can be made for 
instance of the analytic-quadratic version of the tetrahedron scheme 
(Boon et al 1986). 

The mul tiband DOS can be expressed as a sum of the individual band 
contributions: 

II.6.34 

and is therefore a patchwise continuous function of e, the 
discontinuities occurring at band extremes. In each continuity region 
pIe) is a polynomial of degree Jl max+1 so that integrated quantities 
are very easily obtained. 

In particular, when determining the Fermi energy, we need to calculate 
for arbitrary E the number N(E) of states (per unit cell) with energy 
less than E. By indicating with n..: the number of bands whose upper 
extreme B (j) is less than El and with r' j a sum extended to those 
bands for which A(j)..: E ..: B(j" we have: 
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R 
2 + 2 1:' max {F(j)/h } • [x(j)(E)] 

j -oR R R 

(_1)i+1 

i + 1 
C (R) 

i+1 
c(R)/(i+1) 

i 

II. 6.35 

I1.6.36 

[0 " i .. R] II.6.37 

The Fermi energy €F is then easily determined by numerically solving 
equation II.6.4, that is: q = N(€F). 

When reconstructing the P matrix, one must distinguish the 
contribution from fully occupied bands and from partially occupied 
bands (such as are present in the case of conductors): 

p U ) 
IJvg 

R (j) 
-lJvgo = W oc ( j ) 

g -We-g) [fully occupied band, g€G] I1.6.38 

p(j) 
IJvg 

R(j) 
-lJvgo 0 [fully occupied band, g4-G] I1.6.39 

P (j) 
IJvg 1:R 

f (j) 
-/.IvgR 

• [x(j)(€ )] 
R F [partially occupied band] I1.6.40 

with .R (x) defined as in equation II.6.36. 

Figure II.6.1 clarifies the sequence of operations to be performed in 
the application of the scheme described in this section. In spite of 
its apparent complexity, the algorithm is extremely fast because in 
its essence it reduces to a few matrix multiplications. 
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.................................. 
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$............. [Input] q 
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[OUtput 1 Proi.DOS (24,34) t 
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[output 1 Density matrix p(j) 
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Figure II.6.1. Interpolation and integration scheme described in this 
section. Numbers in parentheses (xx,yy, ..• ) refer to the 
corresponding equations II.6.xx, II.6.yy, etc. 


