Skip to content

Single-Point Calculations

SCF, Convergence, Thresholds, Density Functionals, Spin

10 Topics 44 Posts
  • Problem with Restart in MPPcrystal

    2
    0 Votes
    2 Posts
    103 Views

    Dear Rams,

    From your input/output files, it doesn't seem you are doing anything particularly wrong. It is more that the system is perhaps a bit more challenging. Here are a few ideas that might be of use regarding speed up and convergence:

    i) You are having quite large lattice parameters (15 Angstrom in each direction). In this case having a 4x4x4 mesh of k-points is perhaps even more than needed to converge the total energy, so you can try reducing it to a 3x3x3 or 2x2x2 mesh to reduce the computational cost and get some speed up (without compromising quality). You could probably go to 1 k-point just as well, but then you might not get a correct Fermi level sampled. Which brings me to the second point...

    ii) Do you expect your system to be metallic? If so, you can test a few values of the smearing parameter to see whether it makes a difference to the convergence behaviour. If you know you need to get a semiconductor, then you might want to try shifting the occupied states down in energy (keyword LEVSHIFT to prevent the system from getting stuck in a conducting state and causing the SCF to get stuck...

    iii) You have the DIISALLK keyword in your input file, have you tested that as necessary for the convergence of the undoped cell? It does increase the memory/storage requirements, so could be worth trying with just the default (gamma-point) DIIS...

    iv) One alternative is to turn off the DIIS convergence accelerator and revert to "classical" Fock mixing. Albeit slower in convergence than DIIS, it can stabilize the SCF procedure avoiding strong, sudden oscillation in the solution (while DIIS is turned on, the FMIXING is used only in the very first SCF step)...

    v) Coming back to the charge oscillations you observed, they do indeed start appearing very quickly in your second run.
    Here are the corresponding total energies from your OUTPUT_Run1.d12:

    CYC 0 ETOT(AU) -1.128999989618E+05 DETOT -1.13E+05 tst 0.00E+00 PX 1.00E+00 CYC 1 ETOT(AU) -1.129553711002E+05 DETOT -5.54E+01 tst 0.00E+00 PX 1.00E+00 CYC 2 ETOT(AU) -1.129699205883E+05 DETOT -1.45E+01 tst 7.60E-05 PX 9.78E-02 CYC 3 ETOT(AU) -1.123277877060E+05 DETOT 6.42E+02 tst 4.05E+00 PX 8.33E+00 CYC 4 ETOT(AU) -1.123934069238E+05 DETOT -6.56E+01 tst 1.68E-01 PX 6.66E+00 CYC 5 ETOT(AU) -1.128505608381E+05 DETOT -4.57E+02 tst 2.53E-01 PX 1.17E+00 CYC 6 ETOT(AU) -1.126570396187E+05 DETOT 1.94E+02 tst 1.41E-01 PX 1.13E+00 CYC 7 ETOT(AU) -1.129397986733E+05 DETOT -2.83E+02 tst 1.36E-01 PX 1.16E+00 CYC 8 ETOT(AU) -1.128184205493E+05 DETOT 1.21E+02 tst 9.81E-02 PX 6.95E-01 CYC 9 ETOT(AU) -1.129501102455E+05 DETOT -1.32E+02 tst 9.49E-02 PX 6.74E-01 CYC 10 ETOT(AU) -1.129223250516E+05 DETOT 2.78E+01 tst 5.80E-01 PX 6.62E-01

    And then from OUTPUT_Run2.d12

    CYC 0 ETOT(AU) -1.129223250516E+05 DETOT -1.13E+05 tst 0.00E+00 PX 1.00E+00 CYC 1 ETOT(AU) -8.145313982597E+04 DETOT 3.15E+04 tst 0.00E+00 PX 1.71E+02 CYC 2 ETOT(AU) -1.058417907360E+05 DETOT -2.44E+04 tst 2.27E+00 PX 1.71E+02 CYC 3 ETOT(AU) -7.201760490303E+04 DETOT 3.38E+04 tst 9.37E+00 PX 3.62E+02 CYC 4 ETOT(AU) -3.830339502397E+04 DETOT 3.37E+04 tst 1.36E+02 PX 7.83E+02 CYC 5 ETOT(AU) -5.612117026766E+04 DETOT -1.78E+04 tst 2.27E+01 PX 5.54E+02 CYC 6 ETOT(AU) -1.006357459536E+05 DETOT -4.45E+04 tst 3.23E+01 PX 5.67E+02 CYC 7 ETOT(AU) -1.131945182713E+05 DETOT -1.26E+04 tst 9.68E+00 PX 2.13E+02 CYC 8 ETOT(AU) -1.203304661632E+05 DETOT -7.14E+03 tst 8.51E+00 PX 1.06E+02 CYC 9 ETOT(AU) -1.148704842219E+05 DETOT 5.46E+03 tst 1.77E+01 PX 6.53E+01 CYC 10 ETOT(AU) -1.235795679474E+05 DETOT -8.71E+03 tst 2.63E+00 PX 4.40E+01

    In the first run the total energy does not oscillate, hence why the atomic charges are still somewhat as expected. In the second run, the SCF solutions starts fluctuating much more (see difference in total energies) and as a result the charges get destabilized. The SCF might not recover from that at all (even though it seems it could), so I would suggest first trying speeding up the simulation to try and get the job done in one run. Alternatively you might have to go with slower mixing and more restarts, but that is not a guarantee for a solution either. Further options include increasing the DFT grid (XXLGRID, XXXLGRID) or further increasing the last number of the integral tolerance (even though yours is pretty high already).

    Hope any of this is helpful in the end!

    Cheers,
    Aleks

  • Charge State Calculation for periodic System in CRYSTAL17

    3
    0 Votes
    3 Posts
    79 Views

    Hi,

    If I may, I'll add a few more lines on Alessandro's comment that might be of use (or not...)

    Let's say you want to change the charge state of one of the Li atoms in your cell. Assuming that it is atom number XY with atomic number 3, your input might look something like this:

    Title [geometry] END [basis set] ... 3 3 -> Li example basis set 0 0 6 2. 1. 700.0 0.001421 220.0 0.003973 70.0 0.01639 20.0 0.089954 5.0 0.315646 1.5 0.494595 0 0 1 1. 1. 0.5 1.0 0 2 1 0. 1. 0.6 1.0 ... 99 0 CHEMOD 1 XY -> atom number whose charge you change for the initial guess 2.0 2.0 0.0 -> electronic charge of all shells in the basis set, here you alter the initial charge guess (note that the initial configuration is 2.0 1.0 0.0, so you will end up in the "-1" charge state) CHARGED END [SCF parameters] END

    As usual, supercell size should be converged, localization of the defect confirmed, etc. Good luck with the defect formation energy corrections...one way to go is to use the multipole correction (aka Makov-Payne, see e.g., 2010 J. Phys.: Conf. Ser. 242 012004 or PRB 81, 205214 (2010))...or you can write your own piece of code to interface CRYSTAL's output to for example the scheme of Kumagai and Oba (Phys. Rev. B 89, 195205) !

    Hope it helps.

    Cheers,
    Aleks

  • Dispersion scheme D4 documentation

    3
    0 Votes
    3 Posts
    96 Views

    Hi Giacomo,

    thank you for your answer.
    You are right, D4 is mentioned in the JCTC article as "further developments to the code", which I misunderstood.
    The article clearly mentions it as future development, not as list of further developments not laid out in detail in the article.

    Thank you for your help in clarifying this.

    Kind regards,
    Georg

  • MP2 single points

    2
    0 Votes
    2 Posts
    74 Views

    Hi,

    The MP2 option is no longer supported in recent versions of the CRYSTAl program. If you are interested in a periodic MP2 calculation, my suggestion is to contact Lorenzo Maschio ([email protected]) and Denis Usvyat ([email protected]) directly, who may provide guidance in the use of the CRYSCOR program.

  • How is the Fermi level computed in CRYSTAL?

    3
    0 Votes
    3 Posts
    140 Views

    Hello Prof. Erba,

    Thank you for providing the reference and relevant pages. This is very useful.

    Best,
    Danny

  • 0 Votes
    11 Posts
    289 Views

    Your response is incredibly valuable—thank you so much.I suspect that the DIIS/Anderson extrapolation might have 'hit' a local minimum, so the density guess in iteration 8 happened to yield a total energy extremely close to that of the previous step, resulting in a very small ΔE.
    CYC 0 ETOT(AU) -8.456120523718E+03 DETOT -8.46E+03 tst 0.00E+00 PX 1.00E+00
    CYC 1 ETOT(AU) -8.390242659622E+03 DETOT 6.59E+01 tst 0.00E+00 PX 1.00E+00
    CYC 2 ETOT(AU) -8.391027170997E+03 DETOT -7.85E-01 tst 3.34E-03 PX 1.13E-01
    CYC 3 ETOT(AU) -8.391734802465E+03 DETOT -7.08E-01 tst 2.44E-03 PX 1.02E-01
    CYC 4 ETOT(AU) -8.392064543836E+03 DETOT -3.30E-01 tst 8.38E-04 PX 4.49E-02
    CYC 5 ETOT(AU) -8.392086825687E+03 DETOT -2.23E-02 tst 1.24E-04 PX 1.72E-02
    CYC 6 ETOT(AU) -8.392095974656E+03 DETOT -9.15E-03 tst 2.86E-05 PX 9.66E-03
    CYC 7 ETOT(AU) -8.392097542826E+03 DETOT -1.57E-03 tst 3.85E-06 PX 4.81E-03
    CYC 8 ETOT(AU) -8.392097541980E+03 DETOT 8.46E-07 tst 5.41E-06 PX 3.18E-03
    CYC 9 ETOT(AU) -8.392098065539E+03 DETOT -5.24E-04 tst 4.69E-06 PX 3.18E-03
    While this DETOT value satisfies the default energy convergence criterion, the corresponding values suggest that the electron density had not yet fully stabilized. This aligns well with your suggestion that tightening the convergence threshold would lead to a more reliable result.
    Thank you again for your guidance.

  • 0 Votes
    4 Posts
    123 Views

    Hi Alessandro and Giacomo,

    Thank you for the clear and helpful explanations!

    I tried running the calculation with 32 cores, and it indeed helped with memory management. I’ll continue experimenting to optimize performance. Really appreciate your guidance and the references!

  • Spin polarised calculation

    Moved
    6
    0 Votes
    6 Posts
    243 Views

    Dear Eleonora and Aleks,

    Thank you so much for the detailed explanation and for sharing the corrected input/output file. That really clarified the issue. I tried your suggested settings with FMIXING and SPINLOCK adjustments, and the geometry optimization is running well with no errors. Have a nice day!

    Best,
    Aparajita

  • Anisotropic Shrinking Factor

    3
    0 Votes
    3 Posts
    94 Views

    Hey,

    Thank you. It works now. This Forum is a great idea!

  • cam-B3LYP with pobTZVP SCF convergence

    7
    0 Votes
    7 Posts
    210 Views

    job314 Good point! About the shrinking factor: the anisotropic shrinking factor in CRYSTAL does not work properly for those calculations where the symmetry of the system may change (for instance in frequency calculations, FREQCALC, where displaced nuclear configurations are explored, or elastic calculations, ELASTCON, where the lattice is strained, etc.). So in general, I personally tend to avoid using an anisotropic shrinking factor.

    However, for symmetry-preserving calculations (such as SCF, OPTGEOM, EOS) the use of an anisotropic shrinking factor should be fine.