Skip to content
Recent Topics
  • 75 Topics
    353 Posts

    Hi Drmajouri2025,
    When performing frequency calculations, it is essential that the geometry is fully optimized with the SCF properly converged. If the structure is not at a true stationary point of the potential energy surface, the computed second derivatives (Hessian) can lead to unreliable frequencies and response properties.

    Regarding the *******************, these typically means that the value exceeds the field width allocated in the printing format. In other words, the number is too large (or not representable) within the fixed output format, so it is replaced by stars.

    However, in your case, since the geometry did not converge properly, the appearance of stars is very likely due to numerical problem rather than just a harmless formatting issue.

    I would strongly recommend:

    First ensuring tight SCF convergence (you can also increse TOLDEE and/or TOLINTEG parameters). Fully optimizing the geometry until forces are below the required thresholds. Verifying that the optimized structure has no imaginary frequencies. Only then performing the Raman calculation.
  • 21 Topics
    75 Posts

    Thank you! This is much more comfortable.

  • Seek assistance, discuss troubleshooting tips for any technical problem you encounter and report bugs

    18 Topics
    90 Posts

    Dear Alexander,
    We runned a few tests, and, indeed, we found the same behavior. This, though, is not due to an error in the definition in the basis set, but rather to some formatting issue, since the Cs goes up to P4 the code expects that also the Iodine pseudo goes up to P4 and fills the missing coefficients and exponents with zeros.

    Luckily there is an easy workaround to this, it is sufficient to flip Cs and I definition in the geometry and the results are the same as the one you obtained by defining the basis set in the input as you can see from my test.

    I will leave you here two output snippets hoping that they help clarifying the issue:

    Cs defined before I in the geometry section INPUT COORDINATES ATOM AT. N. COORDINATES 1 38 5.000000000000E-01 5.000000000000E-01 5.000000000000E-01 2 55 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 3 53 0.000000000000E+00 5.000000000000E-01 5.000000000000E-01 [...] ******************************************************************************* *** PSEUDOPOTENTIAL INFORMATION *** ******************************************************************************* ATOMIC NUMBER 38, NUCLEAR CHARGE 10.000, PSEUDOPOTENTIAL TYPE EXPONENT COEFF. N EXPONENT COEFF. N P0 TMS 6.9334610 135.2710429 0 4.1140038 17.9440714 0 P1 TMS 7.2168166 29.4380813 0 7.1736962 58.8806749 0 3.0227988 4.9362827 0 2.8656990 9.7233521 0 P2 TMS 6.3215146 11.9072392 0 6.3914995 17.8595514 0 1.7697266 2.1991802 0 1.6367717 2.8935709 0 P3 TMS 4.2441984 -5.5093333 0 4.2291645 -7.3046417 0 ATOMIC NUMBER 55, NUCLEAR CHARGE 9.000, PSEUDOPOTENTIAL TYPE EXPONENT COEFF. N EXPONENT COEFF. N P0 TMS 4.0811192 84.5477223 0 2.4215224 16.6540350 0 P1 TMS 5.5339726 52.3496307 0 5.5067944 104.6994132 0 2.2809616 8.8065577 0 2.1034905 17.6166111 0 P2 TMS 1.8131494 5.2689855 0 1.8077217 7.9036419 0 0.8729040 1.3364313 0 0.8587203 2.0056513 0 P3 TMS 5.2170839 -16.4976543 0 5.1481965 -23.3081313 0 1.5805995 -2.2368273 0 1.3478959 -2.2269420 0 P4 TMS 1.8077398 -2.5041987 0 1.8050613 -3.1382445 0 ATOMIC NUMBER 53, NUCLEAR CHARGE 25.000, PSEUDOPOTENTIAL TYPE EXPONENT COEFF. N EXPONENT COEFF. N P0 TMS 40.0333760 49.9896490 0 17.3005760 281.0065560 0 8.8517200 61.4167390 0 P1 TMS 15.7201410 67.4162390 0 15.2082220 134.8076960 0 8.2941860 14.5665480 0 7.7539490 28.9684220 0 P2 TMS 13.8177510 35.5387560 0 13.5878050 53.3397590 0 6.9476300 9.7164660 0 6.9600990 14.9775000 0 P3 TMS 18.5229500 -20.1766180 0 18.2510350 -26.0880770 0 7.5579010 -0.2204340 0 7.5974040 -0.2216460 0 P4 TMS 0.0000000 0.0000000 0 0.0000000 0.0000000 0 I defined before Cs in the geometry section INPUT COORDINATES ATOM AT. N. COORDINATES 1 38 5.000000000000E-01 5.000000000000E-01 5.000000000000E-01 2 53 0.000000000000E+00 5.000000000000E-01 5.000000000000E-01 3 55 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 [...] ******************************************************************************* *** PSEUDOPOTENTIAL INFORMATION *** ******************************************************************************* ATOMIC NUMBER 38, NUCLEAR CHARGE 10.000, PSEUDOPOTENTIAL TYPE EXPONENT COEFF. N EXPONENT COEFF. N P0 TMS 6.9334610 135.2710429 0 4.1140038 17.9440714 0 P1 TMS 7.2168166 29.4380813 0 7.1736962 58.8806749 0 3.0227988 4.9362827 0 2.8656990 9.7233521 0 P2 TMS 6.3215146 11.9072392 0 6.3914995 17.8595514 0 1.7697266 2.1991802 0 1.6367717 2.8935709 0 P3 TMS 4.2441984 -5.5093333 0 4.2291645 -7.3046417 0 ATOMIC NUMBER 53, NUCLEAR CHARGE 25.000, PSEUDOPOTENTIAL TYPE EXPONENT COEFF. N EXPONENT COEFF. N P0 TMS 40.0333760 49.9896490 0 17.3005760 281.0065560 0 8.8517200 61.4167390 0 P1 TMS 15.7201410 67.4162390 0 15.2082220 134.8076960 0 8.2941860 14.5665480 0 7.7539490 28.9684220 0 P2 TMS 13.8177510 35.5387560 0 13.5878050 53.3397590 0 6.9476300 9.7164660 0 6.9600990 14.9775000 0 P3 TMS 18.5229500 -20.1766180 0 18.2510350 -26.0880770 0 7.5579010 -0.2204340 0 7.5974040 -0.2216460 0 ATOMIC NUMBER 55, NUCLEAR CHARGE 9.000, PSEUDOPOTENTIAL TYPE EXPONENT COEFF. N EXPONENT COEFF. N P0 TMS 4.0811192 84.5477223 0 2.4215224 16.6540350 0 P1 TMS 5.5339726 52.3496307 0 5.5067944 104.6994132 0 2.2809616 8.8065577 0 2.1034905 17.6166111 0 P2 TMS 1.8131494 5.2689855 0 1.8077217 7.9036419 0 0.8729040 1.3364313 0 0.8587203 2.0056513 0 P3 TMS 5.2170839 -16.4976543 0 5.1481965 -23.3081313 0 1.5805995 -2.2368273 0 1.3478959 -2.2269420 0 P4 TMS 1.8077398 -2.5041987 0 1.8050613 -3.1382445 0

    I hope this helps

  • Discuss tools and techniques for visualizing simulated data

    5 Topics
    19 Posts

    Hi QMQDCHEM ,
    Could you share your BAND.DAT file so that I can do some quick test?
    Thanks

  • Communications for the community and updates on upcoming events

    7 Topics
    8 Posts

    Dear CRYSTAL community,

    The CRYSTAL Team is heading to Brazil! 🇧🇷✨
    Next week (26th Jan – 29th Jan 2026), we will be in Volta Redonda (Rio de Janeiro state) for the

    logo.jpeg

    QMMC 2026 will be hosted at the Universidade Federal Fluminense and it will be an exciting journey through quantum modelling of materials, covering a wide range of topics in computational chemistry and condensed matter physics.

    We are truly excited to be in Volta Redonda and to share knowledge, experience, and, of course, to spread the CRYSTAL verb!

    More information about the school can be found on the event website.

    See you in Brazil!

Suggested Topics

  • Forum Rules

    Welcome to the official forum for CRYSTAL software users! This is a space to share knowledge, find support, and connect with others interested in solid-state simulations. To maintain a productive and respectful environment, we ask all members to adhere to the following rules...

  • CRYSTALClear

    CRYSTALClear is an open source project that provides an easy Python interface with CRYSTAL. The package allows you to quickly extract information from the CRYSTAL output files and to easily generate customizable plots...


Top Users

0

Online

199

Users

126

Topics

546

Posts