Skip to content

PROPERTIES

Discuss features, updates, and general use of the PROPERTIES module

6 Topics 20 Posts

Subcategories


  • Input Format

    0 Topics
    0 Posts
    No new posts.
  • Total and AO-Projected

    3 Topics
    10 Posts

    Hi,

    Hmmm...even though the SI file of the paper you have shared does point to using HSE06, it remains not entirely clear whether its parameters were kept default or altered (for all systems together or individually for instance).

    There are also differences between what different codes consider as "default" settings. For example, within the code used in the paper (VASP, nice code, no doubt), the defaults for HSE06 read (taken from https://www.vasp.at/wiki/index.php/List_of_hybrid_functionals) :
    $$ \omega= 0.2\ \mathring{A} , \quad c = 0.25, \quad \text{correlation}=\text{PBE}, $$ with the first number reading the range separation parameter (omega) and the second the fraction of exact exchange used (c).

    Within CRYSTAL (also nice code, no doubt), these read (taken from the manual, page 138):
    $$ \omega= 0.11\ a_0^{-1}, \quad c = 0.25, \quad \text{correlation}=\text{PBE}, $$ adopting the same labels.

    Not sure about the exact definition of units (perhaps a developer can comment if this is indeed Bohr radius as assumed?), but you can already see the subtle differences having to be taken into account when comparing between codes.

    A few other thoughts worth considering:

    In the paper, the structure was optimized with PBEsol and on top of that geometry HSE06 was applied as a single-point calculation. Not sure about the exact composition of those ZIFs, but the structural differences could play a significant role as well (planewave codes are very costly when optimizing a structure with hybrid functionals). Here is also a good read on this topic: doi.org/10.1088/2516-1075/aafc4b

    One final small comment. Within the PAW formalism implemented in VASP, scalar relativistic effects are included in the pseudopotentials by default. No problem, cool feature, but should be taken into account when comparing results, especially for heavier elements (longer discussion found here https://blog.vasp.at/forum/viewtopic.php?t=902)

    Hope this helps!

    Cheers,
    Aleks

  • 2D Maps, 3D Plots, X-Ray Structure Factors (Static and Dynamic), Mulliken and Hirshfeld Populations

    0 Topics
    0 Posts
    No new posts.
  • 2D Maps, Compton Profiles, Autocorrelation Function

    0 Topics
    0 Posts
    No new posts.
  • Topological Analysis of the Electron Density (QTAIMAC), Bader Populations

    0 Topics
    0 Posts
    No new posts.
  • Questions that do not fit in other categories

    3 Topics
    10 Posts

    Hi!

    In a COOP calculation you aim to have a description on the interaction between pairs of orbitals or atoms. In order to do that, you need to indicate each pair you are interested to analyze. In your input, in the first line after the COOP keyword, the initial number 1 indicates that you are interested in one pair of orbitals/atoms. You still need to indicate a pair of orbitals or atoms to be considered, writing them in separated lines. Consider this example, taken from the Tutorials webpage:

    NEWK 6 6 1 0 COOP 1 200 7 14 1 12 0 -1 1 -1 2 END

    Here, the two lines before the final END keyword indicate which atoms will be considered (atoms, given that the lines start with a negative value, as stated in the manual page 322). COOP will be evaluated considering the first and second atoms of the systems (with indices 1 and 2). From your previous calculations you can recover the indices of the atoms/orbitals you are interested.

    Let me know if this information has been useful 🙂